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Abstract
In this paper we report the results of a theoretical study of the ballistic tun-
nelling of electrons in magnetic tunnel junctions. We show how first-principles
band-structure calculations and published magnetization data can be used as
inputs to the model, which is then used to predict the magnetoresistance of a
tunnel junction. This approach provides a convenient way to examine effects
not readily treated by purely first-principles calculations such as finite bias and
finite temperature as well as providing a way to treat the amorphous nature
of most tunnelling barriers. Ultimately, the model is used to show how the
tunnelling magnetoresistance depends on extrinsic factors such as applied bias,
and temperature, as well as on the intrinsic properties of the junction such as the
barrier height and thickness. The model generates the asymmetry in the mag-
netoresistance often seen for forward and reverse bias in asymmetric junctions.

1. Introduction

A magnetic tunnel junction (MTJ) is a device in which a thin insulator is sandwiched
between two ferromagnetic layers, one of whose magnetization (M) can be independently
switched. MTJs have two stable states: a low-resistance one in which the magnetizations in
the ferromagnetic layers are parallel, and a high-resistance one where the magnetizations are
antiparallel. The large percentage change in resistance for small applied fields renders them
useful as ultrasensitive field detectors and their two-state capability makes them attractive for
use in magnetoelectronic devices. The tunnelling magnetoresistance ratio (TMR = �R/R)
for this system is defined as the difference between the antiparallel and parallel resistance
divided by the antiparallel resistance. In this paper we use the optimistic definition of the TMR
found by dividing by the smaller parallel resistance:

TMR = RX − R‖
R‖

(1)

where the symbol X is used to indicate antiparallel alignment of the M in the two leads.

0953-8984/02/174365+14$30.00 © 2002 IOP Publishing Ltd Printed in the UK 4365

http://stacks.iop.org/cm/14/4365


4366 A H Davis and J M MacLaren

Julliere formulated the first and simplest expression for the TMR [18], in which the
tunnelling matrix elements associated with the barrier are assumed to be spin independent.
The Julliere model roughly predicts the trends in tunnelling with changing P , though often
junctions with chemically similar electrodes can have very different values of the TMR [52] as
a result of the barrier itself, a factor neglected in this model. The optimistic form of Julliere’s
equation is

TMR = 2PLPR

(1 − PLPR)
, (2)

where P for a particular electrode is defined by

P = N↑ − N↓
N↑ + N↓

, (3)

where N↑ (N↓) is the fraction of up (down) states which participate in the tunnelling.
In general, the TMR depends on the relative alignment of M in the electrodes [18,34,42],

falls with increasing temperature (T ) and applied bias (Vbias) [34, 35], falls with increasing
thickness (d) [46], but can be quenched for very thin barriers [32, 36]. The TMR rises with
increasing barrier height (Vbar), P , or M [34,36]. Annealing can improve the TMR, presumably
because it results in higher or thinner barriers [43, 46]. The temperature dependence of the
TMR (�TMR(T )) is more severe than the temperature dependence of either M (�M(T ))
or P (�P (T )) in the individual electrodes [17, 35], and normal metal in the interface regions
suppresses the TMR [36]. Smaller starting values of the TMR lead to a greater temperature and
bias dependence [33] with the least severe bias dependence seen for high, thin barriers [34,46].
Dissimilar electrodes produce asymmetry in the current voltage (I–V ) characteristics and
TMR(Vbias) for positive and negative Vbias [33,36]. Asymmetry has also been seen for similar
electrodes [5, 23].

There have been numerous attempts to model spin-dependent tunnelling in magnetic
tunnel junctions, including first-principles work [7, 8, 50]. First-principles treatments of the
problem face two significant complications. First, the difficulty in treating the barrier, which
is typically amorphous Al2O3, and second, the problem of finite bias and temperature, which
means dealing with non-equilibrium states. Other theoretical treatments of the tunnelling
problem also rely on simple models that are usually able to reproduce some but not all of
the experimental observations. These include the Julliere model [18] and generalizations to
finite temperature [39], wherein a temperature-dependent polarization was used. However,
in order to fit the measured conductance, a parametrized spin-independent contribution was
included. A tight-binding calculation by Mathon [29] examined trends that resulted from
varying barrier parameters. No actual comparisons to experimental data were made, though the
trends found in our model as the barrier thickness and height were adjusted were also found in
this work. Various models based upon free-electron tunnelling [9,28,42,54] have been studied.
Slonczewski [42] considered the limit of a thick barrier and found a similar expression to that
derived by Julliere; however, the predictions of this model tend to underestimate measured
TMR values. This underestimate is a result of taking the asymptotic limit. In calculations
other than our own, no direct comparisons to measured data were made; rather trends were
examined and predictions made for resonant tunnelling in double-barrier systems. Other
approaches based on model Hamiltonian calculations [15, 53] can also reproduce measured
TMR values and the dependence on bias voltage or temperature. However, these approaches
require the use of adjustable parameters. Finally, models have been proposed that rely on
the introduction of extrinsic transport mechanisms and additional parameters [17,52] in order
to reproduce experimental TMR data. In all of these different models the basic quantum
mechanical model of tunnelling is used, though they differ in the detail of their treatment of
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both applied bias and temperature, and the level of detail used in the description of the lead
states and the barrier. Agreement with experiment often requires the use of some adjustable
parameters.

The model presented in this article is a free-electron approach which uses first-principles
calculations as an input, making it possible to treat amorphous barriers phenomenologically,
and the non-equilibrium cases of finite bias and temperature. Unlike most other free-electron
models, the approach is able to quantitatively reproduce most of the experimentally observed
trends with only a single parameter: the barrier height, if the barrier thickness is known. If
this thickness is not known then this can be adjusted to ensure an accurate fit to the parallel
and antiparallel conductances.

The principal assumption that makes this model both accurate and computationally
efficient is that only a subset of the density of states (DOS) in the leads, the free-electron-
like states, are responsible for the tunnelling behaviour. These bands are then parametrized
with parabolic fits to the results of first-principles density functional calculations. Application
of a bias voltage is assumed to lower the chemical potential of the downstream ferromagnetic
lead and produce a linear variation in potential in the barrier region. A second assumption is that
these tunnelling states are resident in exchange-split bands and that the splitting of the bands is
directly proportional to the temperature-dependent magnetization (average magnetic moment
per volume, M(T )) of the leads, as in a Stoner picture. This permits a phenomenological
model of the temperature dependence of the TMR—by allowing the exchange splitting of the
tunnelling bands to decrease with temperature in a manner consistent with the temperature
variation of the magnetization. In transition metals, the itinerant free-electron-like bands that
are responsible for the tunnelling current are seen experimentally via photoemission to follow
a Stoner-like behaviour in contrast to the other d bands that dominate the moment.

2. Exchange splitting and magnetization

Table 1 summarizes some of the magnetic data for the 3d transition metals. There is a correlation
between the magnetic moments (m) and the exchange splitting (�Eex) in the 3d ferromagnets,
as would be anticipated from a simple model of exchange-split d bands. We see that within an
error of a few per cent,

�Eex ≈ mJ ≈ αM, (4)

where the J are the exchange integrals as calculated by Brooks [6], M is the magnetization, and
the constant α is the product of the exchange integral and the cell volume. Shimizu et al [40]
provided a more rigorous derivation of the same relationship for the exchange splitting in
Fe and Ni. They associated α with the molecular-field coefficient and found it to be only
mildly dependent on temperature—nearly a constant below room temperature. For instance,
the change in α for Fe is only about 2.5% between 0 and 300 K.

The experimental angle-resolved photoemission shows that the exchange splitting of the
dispersive d bands in Fe and Ni varies with temperature [1,13,19,20] and that �Eex was directly
proportional to the bulk M(T ). In contrast, for the less dispersive, more localized d bands
much smaller changes were observed, consistent with the viewpoint of localized moments
present at and above the Curie temperature. MacDonald et al [27] noted that the temperature-
dependent shift of the spin spectral weight in itinerant electron ferromagnets is proportional
to the suppression of the magnetic moment.

Takahashi and Mitsui [47] studied the split conduction bands in magnetic semiconductors
where �Eex and M were considered to be proportional to the thermal average over fluctuating
spin states (〈Sz〉) [21, 47]. In this case, when s states in the conduction band are occupied
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Table 1. Properties of the magnetic transition metals, showing the moments (m) in Bohr magnetons,
after Guimarães [14], the exchange integrals (J ) in eV after Brooks [6], the exchange splittings
(�Eex), obtained from first-principles local spin-density calculations for Fe, Co and Ni by
Huang [16] and Ni80Fe20 by Davis [11], the molar volumes (v) after Lof [26], and the constant
α which is the product of J and v. The moment and exchange splitting for Ni80Fe20 have been
obtained from first-principles calculations by the authors, and the exchange integral for Ni80Fe20
is an interpolation between those of Fe and Ni.

�Eex, �Eex Molar J v,
Element m J mJ (calculated) volume (v) α

Fe 2.216 0.900 1.98 1.99 7.137 6.42
Co 1.715 0.940 1.61 1.77 6.712 6.31
Ni80Fe20 1.01 0.961 0.97 1.14 6.580 6.42
Ni 0.616 0.975 0.60 0.621 6.631 6.47

by electrons, the conduction band is split by exchange interactions between the conduction
electron spins and the fluctuating local moments arising from the localized ferromagnetically
ordered f states. The exchange splitting of the itinerant states is proportional to 〈Sz〉 for the
f moments. This is similar to the double-exchange model [17, 51] that links the exchange
splitting of itinerant states to M(T ) through the thermally averaged local moments. An
analogous treatment of the 3d ferromagnets would have itinerant electrons occupying a highly
dispersive band that is split by an exchange interaction with a band containing more localized
ferromagnetically ordered d-electron states [17]. This is reasonable, since the itinerant states
are by definition delocalized in space, and can interact with a number of local moments within
a certain neighbouring volume, or average moment per volume, M(T ). Therefore, regardless
of whether the average moment is suppressed with increasing temperature due to a shift of
spectral weight (Stoner excitations), or due to magnon-induced precession (spin waves), or
due to spin fluctuations, we expect �Eex for the itinerant states to be proportional to M(T ).

3. Identifying the states that tunnel (the effective tunnelling band structure)

Stearns [44] proposed that only a portion of the band structure comprising d electrons of T2g

symmetry are mobile enough to contribute significantly to the tunnelling conductance and thus
the spin polarization of the tunnelling electrons. These itinerant T2g electrons are nearly as
mobile as s electrons and account for the observed polarization of the tunnelling current from
3d ferromagnets. First-principles calculations by Butler et al for a [100] Fe/ZnSe/Fe [8] MTJ
and a [100] Fe/MgO/Fe [7] MTJ confirmed Stearn’s hypothesis. In their work, they showed
that bands with �1 symmetry coupled to similar-symmetry evanescent states in the gap of the
barrier, and as a result decayed more slowly in the barrier. The decay rate was shown to be
determined by the imaginary part of the wavevector of the state. In the case of a simple step
barrier where the states inside the gap are simple decaying exponentials, the different decay
rates observed for different symmetry states in the leads can be understood from a Fourier
analysis of the lead state, since if the appropriate state has a periodic structure in the plane of
the interface with a finite smallest reciprocal-lattice vector gmin, then the decay in the barrier

is determined by κ =
√

(2m∗/h̄2)(Vbar − E) + (k‖ + gmin)2.
As an example, we show the calculated bands in hcp cobalt in figure (1), along with the

fitted parabolas for the tunnelling bands used in the tunnelling calculations, superimposed.
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Figure 1. The exchange-split band structure of hcp cobalt calculated from first principles [16].
Parabolas have been superimposed to emphasize the free-electron nature of the bands along the
�–K direction.

4. Calculation of the conductance

The conductance (G) is obtained from the Landauer–Büttiker formulation [3, 22], where

G = e2

(2π)2h

∫ EF

EF −Vbias

dE

∫
d2k‖ T (E, k‖). (5)

The transmission coefficient is obtained by matching the wavefunction and particle flux at
each interface. The barrier states are, of course, given in this model by Airy functions, though
we have found by direct computation that the WKB approximate solutions are adequate for the
range of bias voltages studied in this article. The general expression for finite-bias tunnelling
through the barrier, in the asymptotic limit of zero applied bias voltage and a thick barrier where
the transmission coefficient is dominated by states at the Brillouin zone centre and where the
effective masses of the electrons in each region are all the same, has a transmission coefficient
that takes the particularly simple form

T = 4k1κ2k3e−2dκ

(Vb − V1)(Vb − V3)
. (6)

In the above, Vb −V1 (Vb −V3) is the barrier height above the energy zero of the left-hand
(right-hand) electrode, d is the barrier thickness, and κ describes the decay of the wavefunction
within the barrier. This asymptotic expression explicitly shows the influence of barrier height
and thickness, as well as that of the exchange splitting between the bands. We also see that
the transmission probability depends on the DOS since k1 and k3 are proportional to the DOS
for free electrons. The transmission coefficient (T -matrix) for a finite-thickness barrier with
different electronic effective masses in each region, or an asymmetric barrier potential, or a
barrier with a finite applied bias voltage, is more complicated. Nonetheless, the dependence
on exchange splitting and barrier geometry have similar effects.

In our model, the chemical potential of the downstream electrode is shifted down by the
applied bias. Since the transmission coefficient is small, this ensures that both leads remain
approximately charge neutral. There are now a range of occupied states in a window of energy
from the Fermi energy minus the bias voltage to the Fermi energy, and a range of unoccupied
states from the Fermi level to the Fermi level plus the bias voltage in the other electrode which
participate in the transport.

Now we consider the effects of temperature. The Fermi–Dirac distribution will have an
effect on the conductance because the occupancy of the electronic states near the Fermi energy
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will vary with temperature. We also include temperature dependence of the magnetization in
the electrodes since we have argued that it determines the exchange splitting of the itinerant
states. Therefore, in order to include the effect of temperature on the magnetic band structure,
we simply allow the zero-temperature splitting and the difference between the effective masses
for the two spin channels to collapse at the same rate as M(T ) in the electrodes [12, 13, 20],
since at the critical temperature, all the tunnelling electrons are assumed to share a common
paramagnetic band.

As a result, the polarization, P , now also depends on temperature. We emphasize that
at finite applied bias and temperature, electronic states from above and below the Fermi level
(where P is different) participate in the tunnelling. If the average polarization of all the
participating states is less than that at the Fermi level, then the TMR will be smaller. P

is not in general linear in M , but for the types of tunnelling bands that we fitted, we find
numerically an approximately linear relation [10] as seen experimentally [30,31,48,49]. Our
calculations suggest that knowledge of the bands which supply the tunnelling states and the
magnetization curves which describe M(T ) at the interfaces is sufficient for predicting the
temperature behaviour of the TMR.

5. Using the model

For specific MTJs, we used published M(T ) curves [4] to predict the temperature variation
of the effective masses and exchange splitting of the tunnelling bands. Intrinsic to these
curves are all the excitations which cause M to vary with T . We have noted that M(T ) at
the interfaces will probably differ from the bulk M(T ), but that the shape of the curve will be
qualitatively similar in that it is still essentially Bloch-like in the temperature range of interest.
The differences between bulk and surface M(T ) are in the Bloch coefficients and exponents
(B and β) in equation (7):

Ms(T ) = Ms(0)(1 − BT β). (7)

A surface M(T ) often has Bloch coefficients 2–3 times the bulk value [33]. The surface
magnetization curve of a FexNiyBz ferromagnetic metallic glass investigated by Pierce et al
[38] is fitted with a Bloch coefficient that is about 2.8 times that of the bulk value. Additionally,
lower-dimension systems are expected to exhibit a suppressed Tc [2]. Strong experimental
evidence that it is the interface electronic and magnetic properties that determine the TMR is
provided by LeClair et al [25]. In this work the Cu was deposited at the interface between
the ferromagnetic lead and the barrier and a rapid exponential quenching of the TMR was
measured as a function of the Cu layer thickness.

We define the band structure by extracting the Fermi energy, effective masses, and energy
minima of the split parabolic tunnelling bands from calculated band structures such as that of
figure 1. The effective masses are found by fitting a parabola to the calculated bands for each
spin channel. The parameters for bulk hcp Co are �Eex = (V↓ − V↑) = 1.67 eV, m∗

↑ = 1.77,
m∗

↓ = 1.58 with EF positioned about 2.2 eV above the bottom of the spin-up band. We would
like to reiterate that there will be some difference between bulk parameters and those which
might be found in the interface regions, and that allowing �Eex, m∗ and the position of the
bottom of the tunnelling band with respect to the Fermi energy to vary in a narrow range may
give better fits to experimental data.

The barrier is represented at zero bias by a step potential (or trapezoid for asymmetric
barriers), and when the junction is biased the applied voltage is assumed to be dropped
uniformly in the barrier region. Typically, Simmons’ [41] theory in conjunction with I–V

curves can be used to estimate effective parameters for the barrier (d and Vbar). A consequence
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Figure 2. The thickness dependence of the TMR, comparing various experiments [33, 34, 37, 39,
43, 45, 46, 52], and compared to a calculations for a generic Co/I/Co MTJ.

of this is that by relying on the shape of the I–V curves, one obtains different parameters for
the parallel and antiparallel configurations. This is due to the fact that the Simmons model
does not specifically treat the spin-polarized electronic structure in the leads, but rather lumps
the effects of the band structure into an effective barrier. Therefore, we tend to use the actual
physical thickness of the barrier if it is known and make the effective barrier height an adjustable
parameter whose value is close to the average value obtained by a Simmons fit. The model
also allows for the effective mass in the barrier to be specified. We have assumed in the work
presented here that m∗ = 1 in the barrier.

6. Results

In this section, we will present the results of some tunnelling calculations. In figure 2, we have
plotted experimental data for zero bias for the TMR, grouped such that points with similar
barrier height but different thickness share the same symbol. Curves showing the calculated
thickness dependence for various barrier heights have been plotted with the experimental data.
In the figure we see good agreement with the measured TMR values and trends as regards
the thickness and the barrier height. As can be seen, higher thinner barriers produce a higher
TMR. Strikingly, most of the experiments fall near the calculated results despite the fact that
the composition of the junction electrodes spans a range of compositions from Fe to Co to Ni
and their alloys. The common thread is that all of the electrodes have similar polarizations
suggesting that the effective tunnelling band structures of the various electrode compositions
are similar.

The origin of the trend of decreasing TMR with barrier thickness reflects the increasing
dominance of states at the zone centre on the conductance as the barrier thickness is increased.
Thinner barriers on the other hand include contributions to the conductance from states away
from the zone centre and thus the different sizes of the Fermi spheres for the two spin-polarized
tunnelling bands are important.

Figure 3 shows the calculated effect of barrier height on the TMR at zero bias. We observe a
monotonic increase in the TMR with increasing barrier height and decreasing barrier thickness.
The dependence on barrier height does not appear to have a simple intuitive explanation, but
rather follows from the dependence of the T -matrix on the barrier height. Unlike the case for
thickness, the barrier height dependence is not confined to the exponential term in the T -matrix
but plays a prominent role in the prefactor as well. While increasing the barrier height tends
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to lower the TMR for exactly the same reasons as explain the decrease with increasing barrier
thickness, the prefactor, which reflects the wavefunction-matching conditions, dominates and
causes the TMR to increase with increasing barrier height.

Next we consider how barrier parameters influence the bias dependence of the TMR. As an
example of the level of accuracy obtained from the model, we have calculated the dependence
of the TMR on applied bias for an Fe|Al2O3|Fe junction and compared it to data published
by Zhang and White [52]. The results of the calculation are shown in figure 4. As can be
seen, both the magnitude of the TMR and the shape of the bias dependence of the TMR are
fitted quite well by parametrized barriers whose thickness and height are close to the reported
values. A unique barrier fit can be obtained if the I–V curves are also known, and we have
performed this type of analysis for several Co|Al2O3|Co tunnel junctions [9–11].

The model can be used to predict effect of applied bias on junctions with different barrier
parameters. Control over barrier height can be achieved to some extent by the method of
oxidation chosen to form the barrier. For illustration, we have plotted the normalized TMR
in figure 5 for a Cohcp|Al2O3|Cohcp tunnel junction. The lower the barrier height, the more
severe the bias dependence. This behaviour can be understood by realizing that at finite bias
we have an effective barrier. The smaller the true barrier height at zero bias in relation to the
bias voltage, the greater the effect of bias and the greater the percentage reduction in the TMR.
This conclusion is consistent with previous studies [34].
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Figure 6. The magnetic band structure of fcc Co. Note the highly dispersive minority band in the
�–K direction that begins above the Fermi level.

We note often experimentally that, as Co has a small stacking fault energy, the Co electrodes
may exhibit mixed fcc and hcp phases. We find that calculations using the hcp Co bands
consistently give a lower TMR than those using a combination of fcc and hcp Co bands. This
has been observed experimentally by LeClair et al [24] and can be understood by noting in
figure 6 that the minority tunnelling band along the �–K direction in fcc Co is unoccupied
(begins above EF ), so the contribution to the tunnelling conductance is very highly polarized,
leading to the prediction of a higher TMR for fcc–hcp mixed systems as the relative amount
of the fcc phase increases.

Figure 7 shows the variation in the TMR with applied voltage for several barrier
thicknesses. On a percentage basis, thinner barriers with a higher initial TMR ratios
show the mildest reduction with applied bias, as expected [33, 46]. The decrease in the
TMR with increasing thickness results from an approach to the asymptotic limit derived
by Slonczewski [42]. In this limit, the current arises only from states with parallel crystal
momentum (k‖) equal to zero, since states with any parallel momentum will decay too
severely to contribute to the tunnelling conductance. Thus differences in current resulting from
differences in the majority- and minority-Fermi-sphere sizes are eliminated. The polarization
of the tunnelling current and hence the TMR goes down because the reduction in participating
majority states is more serious than for the minority states. This appears to be a universal
effect since it depends on the barrier parameters.
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Figure 7. Thickness dependence of the TMR as a function of bias for an hcp-Co-based tunnel
junction. A higher TMR is predicted for thinner barriers.

It is worth pointing out that while the model predicts that thinner barriers produce higher
values of the TMR, experimentally very thin barriers show a quenching of the TMR which
is thought to result from magnetic coupling between electrodes (orange-peel coupling), or
because very thin high-quality barriers are difficult to form. As a result, the tunnelling
conductance may be augmented by current that is less polarized via pinholes or because
coupling between electrodes prevents complete attainment of the antiparallel state. The
practical effect of further reduction of the barrier thickness below a certain critical thickness
is a suppression (masking) of the intrinsic thickness dependence [36].

It is also interesting to note that increasing Vbar has the opposite effect on the TMR to
increasing d . This means that there are a range of thickness–height pairs which can produce the
correct TMR. However, since increasing either parameter suppresses conductance, only one
Vbar–d pair can simultaneously produce the correct TMR and current density. Furthermore,
insight into the effective tunnelling bands can also be gained if one allows the description of
the bands to vary slightly until the correct �TMR(Vbias) is also produced. We have tested
the model against data for several MTJs and found that it is possible to simultaneously match
current density and TMR(Vbias) with parameters for the barrier very close to the deduced
starting parameters.

Next we wish to study the temperature dependence. Our model is based on the observation
that the tunnelling bands appear to behave as in a Stoner picture, and that at low temperatures
(relative to the Curie temperature) the exchange splitting is proportional to the magnetization.
In figure 8 we compare the calculated TMR versus temperature against experimental values
obtained from the literature for two different tunnel junctions. Using bulk magnetization
curves produces a fall off in the TMR that is less rapid than that in experiment. However, by
increasing the parameter B, or alternatively reducing the Curie temperature, the magnetization
can be made to fall off more rapidly. The fitted curves have a fall off in the magnetizations
at low temperatures of about twice the bulk value, which is not inconsistent with measured
surface and interface magnetic behaviour.

As in the case of our studies on the influence of bias voltage on the TMR, figure 9
shows that �TMR(T ) is sensitive to the barrier geometry and that high thin barriers produce
the highest TMR. We can also see that on a percentage basis, high thin barriers produce the
mildest �TMR(T ) for temperatures below 300 K, but at intermediate temperatures �TMR(T )

increases dramatically for these barriers. This means that for small changes in M such as occur
between zero and room temperature, large changes in the TMR can occur, and that near TC

where M is experiencing its greatest decay, the rate of change of the TMR might be quite mild.
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Figure 8. The temperature dependence of the TMR obtained using the bulk magnetization versus
temperature curves and magnetization curves that reduce the value of M at a rate that is a function
of bias for an hcp-Co-based tunnel junction. A higher TMR is predicted for thinner barriers.
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Figure 9. The barrier geometry and TMR(T ) for a hcp-Co-based tunnel junction. High thin
barriers yield a higher TMR.

This explains quite well the observation that the TMR seems to fall much more quickly with
temperature than does either P or M [17, 35].

The final issue that we would like to discuss concerns the asymmetry in the TMR of a
tunnel junction under forward and reverse applied bias voltages. There are several ways in
which such an asymmetry can arise. One way is if the electronic structures of the tunnelling
states in the two leads differ; another is if the interfaces themselves differ; while another is
if the barrier itself has asymmetry. Asymmetry could be expected in many MTJs since there
are clear differences in growth for the two electrodes. The first electrode is deposited on a
carefully prepared buffer while the other is deposited on a rough amorphous Al2O3 surface.
This explains the observation that otherwise-identical electrodes might produce an asymmetric
response. In fact LeClair et al [24] have grown Co|Al2O3|Co MTJs where both Co electrodes
have been grown as a mixture of hcp and fcc phases and others where the fcc phase dominates
the mix in one of the electrodes. In this work, they only find significant asymmetry in the latter
group of MTJs. This strongly suggests that when the two electrodes have different electronic
structures, an asymmetric TMR results. This case provides one of the most dramatic examples
of an asymmetric response, and this can be traced back to the underlying band structure. In
figure 6, we can see for fcc Co that the minority tunnelling band is unoccupied. Hence in one
direction of the applied bias, which lowers the chemical potential of the fcc Co with respect
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Figure 10. The asymmetry in a theoretical Co|Al2O3|Fe MTJ (dissimilar electrodes), and the
asymmetry due to an asymmetric barrier in a Co|Al2O3|Co MTJ. The difference in barrier height
between the two interfaces was 0.5 eV.

to the hcp Co electrode, this ‘unoccupied’ band can accept electrons and contribute to the
conductance. However, biasing in the opposite sense keeps this band unoccupied and so it
does not contribute to the conductance.

Brückl et al [5] showed that Cu migrating into the interface region of a Co|Cu|Co|Al2O3|Co
MTJ during annealing produces a large asymmetry in the I–V (and TMR) characteristics.
This produced a Cu–Al2O3 intermixing zone that modified the barrier at that interface, which
strongly suggests that an asymmetric barrier can produce an asymmetric response. Calculations
with asymmetric barriers reflecting intermixing at one interface only do indeed reproduce the
asymmetry [11].

As an example we have computed the expected TMR for asymmetric junctions, one with
different electrodes, the other with an asymmetric barrier chosen to represent the type of alloyed
barrier studied by Brückl. As can be seen in figure 10 the TMR for positive applied bias differs
from that for negative applied bias. In the case of a junction fabricated from different ferromag-
nets, this type of asymmetric response may be of benefit. Since all devices are operated at finite
bias, such junctions may take advantage of the slower fall-off in TMR for one bias direction,
while utilizing the properties of the different magnetic layers to control switching and allowing
one layer to be pinned with the other free to rotate in the presence of an applied magnetic field.

7. Conclusions

We have presented a straightforward treatment of spin-dependent tunnelling in a MTJ with
inputs for the tunnelling states in the two ferromagnetic leads provided by first-principles
calculations and a simple step-potential model of the barrier region whose height is consistent
with the band gap of the barrier. This model can quantitatively reproduce the observed zero-bias
TMR in many experimental samples. At finite applied voltage, we assume that the potential is
dropped only in the insulating barrier region and that this can be modelled by a simple linear
potential. Such a model also reproduces the observed bias dependence and the asymmetry when
the two electrodes differ. This model allowed us to explore the role of various parameters in
the TMR leading us to the conclusion that thin high barriers offer the greatest response for
a given set of ferromagnetic electrodes. The benefits of a thin barrier were that states away
from the zone centre contributed to the current, and thus the differently sized Fermi spheres
of majority and minority carriers impacted on the conductance. The currents in thick barriers
were dominated only by states near the zone centre. The role of biasing could be interpreted
in terms of an effective barrier and the decrease in polarization of the states at higher energies.
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We have also applied our model to a study of the influence of temperature, including Fermi–
Dirac statistics and a Stoner model of the exchange splitting of the itinerant tunnelling states.
This model was suggested by photoemission studies that showed for the 3d ferromagnets
that the exchange splitting of these states collapsed at the Curie temperature; published
magnetization data can produce nearly all of the observed characteristics of the experimental
response. We conclude that the temperature dependence arises primarily because the exchange
splitting of the itinerant portion of the band structure collapses as the temperature increases.
Even though the change in magnetism is small at lower temperatures, a large change in the
TMR can be seen—though in order to reproduce experimental decreases in the TMR, we need
to make the magnetization fall off more rapidly. A more rapid decrease with temperature is not
unexpected for an interface or surface. The extreme sensitivity of tunnelling to the interface
electronic structure was confirmed in experiments by LeClair et al where a single monolayer
on non-magnetic Cu was sufficient to quench the TMR.

Finally the model shows that asymmetry can arise from an asymmetric barrier or from
differences between the descriptions of same-spin states on either side of the barrier. The main
effect of asymmetry is to shift the maximum of the TMR away from zero bias, opening up the
possibility that MTJs could be engineered with a specified optimum operating voltage [11].
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